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Proudman (1956) and Stewartson (1966) analyzed the dynamical properties 
of a fluid occupying the space between two concentric rotating spheres when the 
angular velocities of the spheres are slightly different, in other words, when the 
motion relative to a reference frame rotating with one of the spheres is due to an 
imposed azimuthal velocity which is symmetric about the equator. The conse- 
quences of forcing motion across the equator are explored here. Whereas the 
flow inside the cylinder %? circumscribing the inner sphere and having generators 
parallel to the axis of rotation is similar to that which results when the driving 
is symmetric, the flow outside V is quite different. The Ekman layer on the outer 
sphere persists outside V - its dynamics is modified in the vicinity of the equator 
- and is instrumental in transferring fluid from one hemisphere to the other. 
The divergence of this Ekman layer causes slow, axial motion in the inviscid 
region outside V. On %, two shear layers of thickness O(R-B) and O(R-B) (where 
R is the Reynolds number, assumed large) remove discontinuities in the flow 
field and return fluid from one hemisphere to the other (rather than one Ekman 
layer to the other as is the case when the driving is azimuthal). 

1. Introduction 
The flow psoperties of a fluid occupying the volume between two concentric 

spheres which rotate about the same diameter with slightly different angular 
velocities have been investigated by Proudman (1956) and Stewartson (1966). 
In  the problem they studied, relative motion is due to an imposed azimuthal 
velocity which is symmetric about the equator. This note concerns the flow 
properties of a spherical shell of fluid when motion is forced across the equator. 
The fluid under consideration is contained between two concentric spheres which 
rotate about a diameter with angular velocity Q. Motion relative to a co-ordinate 
frame rotating with the spheres is due to all points on the outer sphere having a 
mesidional velocity component V (assumed constant for mathematical con- 
venience) and a zero azimuthal velocity component. This boundary condition 
may seem physically unrealistic but since it will be shown that the flow is un- 
affected by the presence of barriers in the form of a cylinder which has generators 
parallel to the axis of rotation and which has a radius smaller than that of the 
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inner sphere, it follows that the problem may be realized in a laboratory. It also 
follows that the results to be obtained, and those of Proudman (1956) and 
Stewartson (1966), apply equally well to the circulation in an ocean basin from 
which meridional barriers are absent. (The walls of such a basin intersect the 
bounding spheres along circles of latitude only.) The analysis of motion in an 
ocean basin with meridional walls when the driving velocity has both azimuthal 
and meridional components, and comparison of the theoretical results with 
the experiments of Baker & Robinson (1969), will be presented on a later 
occasion. 

Inner 
sphere 

(6) 
FIGURE 1. (a)  The flow pattern. ( b )  The flow pattern in the shear layers on V. 

(Drawings not to scale.) 

As in the problem solved by Proudman (1956) and Stewartson (1966), the 
cylinder %? which circumscribes the inner sphere and which has generators paral- 
lel to the rotation vector, separates regions of different flow properties. Inside 
%?the flow in the event of meridional driving is identical to the flow which results 
when the driving is zonal. In  the northern hemisphere fluid remains on a cylinder 
coaxial with %' while moving from the Ekman layer on the inner sphere (which 
has a northward transport) to the Ekman layer on the outer sphere (which has 
a southward transport). The axial velocity component is O(R-t), the azimuthal 
velocity component O(1). (Geophysical conventions have been adopted and it is 
assumed that the 0(1)  driving velocity is southward. The Reynolds number 
R = a W / v  where a is the radius of the inner sphere and v is the coefficient of 
viscosity, is assumed large.) In  the southern hemisphere the azimuthal velocity 
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component is reversed, but the axial and meridional velocities are in the same 
direction as in the northern hemisphere. (See figure 1 (a).) 

Whereas there is rigid body rotation outside %? when the driving is azimuthal, 
the Ekman layer on the outer sphere persists outside %? when the driving is 
meridional and its divergence causes O(R-4) axial motion, but no azimuthal 
motion, in the inviscid region outside V .  The extra-equatorial Ekman layer 
dynamics which is characterized by a balance between viscous stresses and the 
Coriolis force associated with the radial component of the rotation vector, breaks 
down when 8 N &r+O(R-*), 8 being the angle of colatitude. At that latitude, 
the Coriolis force associated with the meridional component of the rotation vector 
becomes important. It is found that this region of higher-order dynamics, the 
modified Ekman layer, also removes a singularity which the axial velocity com- 
ponent of the inviscid flow has at the intersection of the outer sphere and the 
equator. 

Since the transport of the Ekman layer on the outer sphere is continuous 
across the intersection of V and the outer sphere, and is in the same direction at 
both A andB (see figure 1 (a) ) ,  there is a net transfer of fluid from one hemisphere 
to the other. Though it seems as if the Ekman layer on the inner sphere could 
return this fluid, the return flow is actually via shear layers on %?. These shear 
layers also remove discontinuities in the flow fields. As in the case investigated 
by Stewartson (1966) shear layers of width O ( R b )  and O(R-4) smooth out dis- 
continuities in the gradient of the azimuthal velocity and the velocity component 
radially out from the axis, respectively. It is the latter layer which transports 
fluid across the equator, losing it to the O(R-f)  layer (in the northern hemisphere) 
which returns the fluid to the Ekman layer on the inner sphere (see figure 1 ( b ) ) .  
A shear layer of width O(R-*) which is necessary to remove a discontinuity in 
the azimuthal velocity when the driving is zonal is unnecessary here because there 
is no zonal motion outside %. The role of the modified Ekman layer on the inner 
sphere is secondary. 

The linear theory is valid provided ( V/aQ) 3-3 < 1.  For values of V exceeding 
this limit, the dynamics of the modified equatorial Ekman layer breaks down due 
to non-linear effects. 

2. Themodel 
Let the radii of the inner and outer spheres be a and aa respectively and let 

Q be the angular velocity of both spheres about a diameter which is described 
by 8 = 0 in spherical polar co-ordinates (ar, 8, 4). Let (Vu,  Vv, Vw) be the cor- 
responding velocity components (see figure 2) measured relative to the co- 
ordinate system which rotates with the spheres. Relative motion is due to all 
points on the outer sphere having a constant meridional velocity V .  

Since the dynamical variables must be independent of q5 (by symmetry), 
the velocity components may be expressed in terms of two functions @ and x. 

51 F L Y  47 
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If non-linear terms are neglected, then the equations of motion may be written 

where 

and R = a2Q2/v & 1 is the Reynolds number of the flow. These equations must be 
solved subject to the conditions that 

a $ / a r = @ = x = o  on r =  1, (2.4) 

@ = x = 0, a$pr = -asin0 on r = a. (2.5) 

!2 

FIGURE 2. Notation. 

For future purposes we record the equations of motion in cylindrical polar 
co-ordinates (p, q5, 5) where 

p = rsine, 6 = rcosB. (2.6) 
The governing equations are 

where 
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3. The flow inside %? 

fluid, then the functions $ and x must satisfy (2.7) with R = co so that 
If it is assumed that viscous stresses are negligible in the main body of the 

x = XO(P),  @ = $o(P). (3.1) 

This solution fails to satisfy the boundary conditions on the spheres, so that 
boundary-layer corrections must be invoked in the vicinity of the spheres. The 
dynamics of these Ekman layers is described by the equations 

It may be shown (Proudman 1956) that, in the northern hemisphere where 
101 < QT, xo and $o must satisfy the compatibility conditions 

(3.3) 

(3-4) 

by studying the Ekman layers on the inner and outer spheres respectively. 
The same equations with xo replaced by - xo are the relevant ones in the southern 
hemisphere. It follows that $o is an even function of latitude, xo an odd function 
of latitude. 

XO(P) = 2 R W  - P 2 F  $o(P), 

P - XO(P) = 2R*(1 - (P2b2))'  l l . O ( P ) ,  

Inside %where both (3.3) and (3.4) must be satisfied 

$ O W  = ( P / 2 W  [ ( I  -P2) )+  (1  - (P2/a2))41-1, 

XO(P)  = P(1 -P2$ [ ( I  -p2)4+ (1 - (P2/a2))'1-1, 

(3-5) 

(3.6) 

provided p < 1 and 1/31 < 8.. The flow may be described as follows. In  the in- 
viscid region fluid remains on a cylinder coaxial with V while it gets transferred 
from the Ekman layer on the inner sphere to the Ekman layer on the outer sphere. 
At a given value of p, the transports of the Ekman layers are equal and opposite, 
that of the Ekman layer on the outer sphere being away from the axis of rotation. 
This description applies to the northern hemisphere provided the driving is 
southwards. Since the meridional velocity component is symmetric about the 
equator, the meridional transports of the respective Ekman layers are, in the 
southern hemisphere, in the same direction as in the northern hemisphere. 
However, the axial flow in the southern hemisphere is from the Ekman layer on 
the outer sphere to the Ekman layer on the inner sphere. 

4. The flow outside %' 

Outside V (3.3) ceases to be relevant. Because xo is an odd function of latitude 

The only motion in the inviscid region outside V is parallel to the axis of rotation. 
51-2 
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Note that the expression for $,(p) is singular at  the intersection of the equatorial 
plane and the outer sphere: at p = a. 

It has been shown (Stewartson 1966) that the Ekrnan layer dynamics, de- 
scribed by (3 .2 ) )  breaks down when O-in = O ( R 4 ) .  The terms - (2/r)sinO~, 
and ( 2 / r )  sin 6' q+@ in (2 .2 )  and (2 .3)  respectively become significant at  this latitude. 
In other words, the Coriolis force associated with the meridional component 
of the rotation vector cannot be neglected dose to the equator. Following Stew- 
artson (1966)) we remove non-dimensional parameters from the modified 
Ekman layer equations by writing 

in which case the equations read as follows: 

Note that p = a - R-f ( A  + &@2) so that the breakdown of the Ekman layer 
dynamics takes place when 

p-u = O(R-Q). 

Y 
7 0 1 3 4 

( ( I )  (h) 
FIGURE 3. (a)  Streamlines in the modified Ekman layer. ( b )  The meridional velocity 

profile a t  the equator in the modified Ekman layer. 

It follows from (4.1) that in this region 

$,(PI O(R-9. 
Hence the singularity of $, is consistent with the match the inviscid flow makes 
with flow in the modified Ekman layer. 

-f The parameter range for which the depth of this modified Ekman layer is comparable 
to cc - 1 (i.e. the parameter range for which viscous effects are important throughout the 
ftuid, near the equator) has been investigated by Carrier (1965) and Philander (1970). 
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Equations (4.3) have been solved numerically (using a method given in the 
appendix) subject to the boundary conditions that 

(i) x* = $* = 0, a$*laA = a on h = 0; (4 .4)  

(ii) x*,$*,$T --f 0 as A-+co; (4 .5)  

(iii) x* = a$*ic/aX = 0 on 2 = 0; (4 -6 )  

(iv) x* - 2(4a)*h-f%4e-7 cos 7 - ae-7 cos 7; (4 .7)  

$* - ($a)fhh-*[ 1 - e-7 (cos 7 + sin 7)] + a#-& e-7 sin 7, (4 .8)  

when 2 B 1, where 9 = A X * .  (This is simply the solution to the extra-equatorial 
Ekman layer equations.) The substitution 

(A ,  ex*, $*) -+ (ab, a-iy, ;t;a, a%$) 

eliminates a from equations (4 .3)  to (4.8). Figure 3 (a) depicts streamlines in the 
y, z plane and figure 3 ( b )  the meridional velocity profile at the equator. 

5. Shear layers on %? 

Whereas the shear layers analyzed by Stewartson (1966) transport fluid from 
one Ekman layer to the other, it is not clear that it is at all necessary for shear 
layers to transport fluid in the case under consideration. Though it is conceivable 
that the fluid could return from the lower to the upper hemisphere in the Ekman 
layer and modified Ekman layer on the inner sphere, it will be seen that the 
return is via shear layers on $2 which also remove discontinuities in the fields. 

If it is assumed that in the shear layers differentiation with respect to p has a 
magnifying effect when R 9 1, but that differentiation with respect to 6 does not 
have such an effect, then the governing equations (2 .7)  reduce to 

a4$lap4 = 2~aXla6 ,  aZxlap2 = - 2 ~ a g l a g .  (5.1) 

These equations must be solved subject to the conditions that 

as p - l +  -m. (5.3) 1 - P  

It will be seen that the limits p - 1 --f T 03 should be interpreted as 

1 - p  9 O(R*) and p- 1 9 O(R-4) 

respectively. The additional boundary conditions a t  the intersections of the 
shear layers and the Ekman layers are simply the compatibility conditions 
(3 .3)  and (3 .4 ) .  

l - x =  2 R t ( l - ( l / a 2 ) ) * $  at c =  (a2-1)6, (5.4) 

x = 2 R t [ ( l  -p2) ]k  q? at 5 = 0 provided p c 1. (5.5) 
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These relations are valid provided ST - 0 > O(R-*). Finally, 

$c = 0 at < = 0 provided p > 0 (5 .6)  

is necessary from symmetry considerations. 
Though neither x nor y? is discontinuous on %, x p  is. It may be shown that a 

shear layer of width O(R-*) can remove a discontinuity in x p  only if it is smaller 
than O(R+). The actual discontinuity is O(Ra) so that an O ( R 3 )  layer isnecessary. 
This layer, however, introduces a discontinuity in @ which may be removed by 
the introduction of an O(R4)  layer. Though the O(R+) layer does not receive 
fluid from the Ekman layer on the outer sphere, it loses fluid to the Ekman layer 
on the inner sphere (in the northern hemisphere). This fluid is obtained from the 
O(R4)  layer which accepts fluid from the O(R3) layer in the southern hemi- 
sphere and transports it across the equator (see figure 1 ( b ) ) .  

(i) The layer of width O(Ra) 
The analysis is essentially the same as that presented by Stewartson (1966). 
Assuming that the first of equations (5.1) may be approximated by xs = 0 (this 
may be verified later), one may deduce from (5.1), (5.4) and (5.5) that 

x = Bs6K+(+&) + 2?(a2 - ~)T%R-A $(s) ,  

where B is an arbitrary constant, K+ is the Bessel function of order 4, of the 
second kind with imaginary argument. 

s = (1 - p )  [R2/2(a2- 1)2]6 

and 9” - s-$93 = - 1 with 8( 0) = 0 and 9 - s% bounded as s + 00. The correspond- 
ing value for @ is 

Choosing B = 0 ensures that both x and xp are continuous on %. However, $ 
is discontinuous so that another boundary layer, an O(R-*) shear layer, has to 
be introduced. It is not possible to do without the O(R+) layer, which removes the 
discontinuity in xp, for it may be shown that the O(R-)) layer can remove dis- 
continuities in xp only if they are smaller than O(R*). 

Note that thevalue of @ is constant (to O ( R 3 ) )  at c = (a2 - l ) 6  so that the shear 
layer does not lose fluid to, or gain fluid from, the Ekman layer on the outer 
sphere. There is, however, a loss of fluid to the Ekman layer on the inner sphere 
in the northern hemisphere. Since 

there is a flux away from 9 to compensate for this loss. 

(ii) The layer of width O(R-*) 
The discontinuity in y? is O(R-4) (see (5.7) and (5.2)), prompting the substitution 

y? = R-!tg, x = R-QX, p - 1  = R-*v. 
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The equations describing motion in the O(R-4) layer are 

a4$/av4 = 2ax/a{, a2gav2 = - zapla{ 
and must be solved subject to the conditions that 

- 
(ii) 9+ = 0 at { =  Oprovided v < 0; 

(iii) qC = 0 at  { =  Oprovided v > 0; 
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By taking Fourier transforms, employing the Wiener-Hopf technique (Noble 
1958) and keeping in mind that 

h3b Goth h3b = K+(h) K-(h), 

where 

and K J h )  = K+( -A) ,  

KJA)  = n+r(i - i ( ~ / ~ ) y r ( + -  i ( b ~ 3 / ~ ) )  

one can show that 

sinh A35 K+(h) 
K+(is) dh, (5.8) -___ 

8 - ih h3(a2 - l)b 

as 6 +- 0 and 8 > 0. The value of $ being constant when 5 = (a2- l)t and when 
5 = 0, v < 0, no fluid is lost to either Ekman layer by the O(R-+) layer. Yet a 
volume of fluid equal to @-t( 1 - (l/az))-* is lost to the O(R+) layer in the 
northern hemisphere. This fluid must necessarily cross the equator from the 
southern hemisphere in the O(R-4) layer. That this is indeed the case may be 
verified by showing that -+ 0 as v -+ 0 on 5 = 0. The integral in (5.8) may be 
evaluated in terms of the residues at  the poles of the various I’ functions: 

where 

It follows that 

But F(0)  = 0, 

P(1) = 7r4, 
therefore F(x)  = I‘(&) 2 arc sinz, 
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Note that the volume of fluid crossing the equator in the O(R-4) layer is exactly 
equal to the volume which the Ekman layer on the outer sphere transports 
across the points A and B (see figure 1 (a)). 

It is the function of the modified Ekman layer on the inner sphere to bring the 
O(f2-k) azimuthal velocity to zero on the inner sphere when in-6’ < O(R4) .  
The velocities in this modified Ekman layer, and its transport, are O(R-B) 
relative to that of the modified Ekman layer on the outer sphere so that the role 
of the modified Ekman layer on the inner sphere is secondary. 

The support of the Office of Naval Research under contract number N00014- 
67-A-0298-001 1 to Harvard University is gratefully acknowledged. 

Appendix. A numerical method for solving the equations describing 
flow in the modified Ekman layer 

If equations (4.3) are converted into time-dependent equations, they read 

A 2 2  = $22m - 2( - Y22 + 2,), 
2t = 222 + 2( - Y$2 + $,I, 

where t represents time non-dimensionalized with respect to (a2/vQ4)). 

The method of solution exploits the fact that the equations of motion are 
parabolic in time so that initial conditions are sufficient to calculate the fields 
at a later time. If the driving velocity is imposed impulsively at  time t = 0, 
the asymptotic solution as t + 00 should correspond to the steady-state solution. 

The following is the finite difference scheme used. 

9 =jAy,  z = kAz, t = mAt, 

X“(Y,Z, t) = x$, $(y, z, t) = 

xj”k = x?j’ + At[($&\ - 2x$--’+ xj”kri)/A~~] 

The equation for (gZa)$ is similar. The boundary conditions (4.4)-(4.8) are the 
relevant ones. The domains of z and y were chosen as 0 < z < 4, 0 < y < 4. 
Increasing the upper limit did not affect the results significantly. The value 0.1 
was adopted for Ay and Az. Computations were repeated for smaller values but 
the results did not change appreciably. Steady-state conditions were attained 
after a non-dimensional time of 4 units. 
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